Package Information
Released: 11/19/2025
Downloads: 1,076 weekly / 1,076 monthly
Latest Version: 0.1.9
Author: Gabriel Lacanna
Documentation
n8n-nodes-vertex-ai-rag
Custom n8n nodes for Google Vertex AI RAG (Retrieval Augmented Generation) with isolated credentials.
Features
- Query Embedding Generator: Generate embeddings from text queries using Vertex AI
- Vertex Vector Search: Search for similar documents in Vertex AI Vector Search
- Isolated Credentials: Separate service accounts for embedding and vector search operations
- Flexible Configuration: Configure project, location, models, and search parameters per node
Installation
Community Nodes (Recommended)
- Go to Settings > Community Nodes in n8n
- Select Install
- Enter
n8n-nodes-vertex-ai-rag - Agree to the risks and install
Manual Installation
npm install n8n-nodes-vertex-ai-rag
Setup
Prerequisites
- Google Cloud Project with Vertex AI enabled
- Two Service Accounts (recommended for security):
- Embedding SA: For generating embeddings
- Vector Search SA: For searching indexed documents
- Service Account JSON keys
IAM Permissions
Embedding Service Account:
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:embedding-sa@PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/aiplatform.user"
Vector Search Service Account:
gcloud projects add-iam-policy-binding PROJECT_ID \
--member="serviceAccount:vector-search-sa@PROJECT_ID.iam.gserviceaccount.com" \
--role="roles/aiplatform.indexEndpointUser"
Usage
1. Configure Credentials
Vertex AI Embedding API
- Go to Settings > Credentials
- Add Vertex AI Embedding API credential
- Fill in:
- Service Account Email
- Private Key (from JSON key file)
Vertex AI Vector Search API
- Add Vertex AI Vector Search API credential
- Fill in:
- Service Account Email
- Private Key (from JSON key file)
2. Workflow Example
Webhook (receive user query)
↓
Query Embedding Generator (convert text to vector)
↓
Vertex Vector Search (find similar documents)
↓
AI Agent (generate answer with context)
↓
Respond to Webhook
3. Node Configuration
Query Embedding Generator
- Project ID: Your GCP project ID
- Location: Region (e.g.,
us-central1) - Query Text: Text to convert to embedding (e.g.,
{{ $json.body.chatInput }}) - Embedding Model: Choose model (default:
textembedding-gecko@003)
Vertex Vector Search
- Project ID: Your GCP project ID
- Location: Region (e.g.,
us-central1) - Index Endpoint ID: Your Vector Search index endpoint ID
- Deployed Index ID: Your deployed index ID
- Query Embedding: Vector from previous node (e.g.,
{{ $json.embedding }}) - Number of Results: How many similar documents to return (default: 5)
Options:
- Text Metadata Field: Metadata field containing document text (default:
text) - Source Metadata Field: Metadata field containing document source (default:
source) - Context Separator: Separator between documents (default:
\n\n---\n\n)
Output Format
Query Embedding Generator Output
{
"queryText": "How to reset password?",
"embedding": [0.123, -0.456, 0.789, ...],
"embeddingDimension": 768
}
Vertex Vector Search Output
{
"context": "[Document 1]\nSource: manual.pdf\n\nTo reset password...\n\n---\n\n[Document 2]...",
"documents": [
{
"rank": 1,
"text": "To reset password, go to settings...",
"source": "manual.pdf",
"distance": 0.15,
"id": "doc_123"
}
],
"documentsCount": 2
}
Security Best Practices
- ✅ Use separate service accounts for each operation
- ✅ Grant minimal required permissions (principle of least privilege)
- ✅ Never hardcode credentials in workflows
- ✅ Store credentials securely in n8n's credential manager
- ✅ Rotate service account keys regularly
Troubleshooting
Authentication Errors
- Verify service account has correct IAM roles
- Check private key format (should include
\nfor line breaks) - Ensure service account is enabled
Vector Search Not Found
- Verify index endpoint ID is correct
- Confirm deployed index ID matches your deployment
- Check that index is deployed and online
Embedding Dimension Mismatch
- Ensure the embedding model matches the one used during indexing
- Common dimensions: 768 (gecko@003), 768 (gecko@002)
Development
# Clone repository
git clone https://github.com/yourusername/n8n-nodes-vertex-ai-rag.git
cd n8n-nodes-vertex-ai-rag
# Install dependencies
npm install
# Build
npm run build
# Link for local development
npm link
cd ~/.n8n/custom
npm link n8n-nodes-vertex-ai-rag
License
MIT
Contributing
Contributions are welcome! Please open an issue or submit a pull request.